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INTRODUCTION

Although there are a number of algorithms for finding parameters a,;. 4,,;.
Jj = l.....n, which make the exponential sum

Yn(l):anlE,l,”(I) +ooe annEl ([)* (1)

tan

where

E(t)y=¢ (2)

a “good” if not best least-squares approximation to a given real valued
function F on |0, co), cf. |1, 4-6], there is no corresponding analysis of the
rate of convergence of Y, to F as n— ooc. In this paper we show that for
almost all of these algorithms

[F=Y,L<K-g". n=12.. (3)

where K is a positive constant, 0 < g < I, and || ||, is the usual L, norm on
[0, o) provided that F is a completely monotonic function having the
representation

Fiy=| e “dfih), 0O<a<f<oo. (20 (4)

where df is a finite nonnegative measure.
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DIFFERENTIAL APPROXIMATION 265
SOME AUXILIARY FUNCTIONS

Given distinct positive numbers 4,,.... 4, and 1 > 0 we define
Ay Ay )
=a,(A, s Ays 4) E () + o+ a,d 4, A) Ey (1),
120, (5)

to be the best least-squares approximation to (2) on |0. o) from the n
dimensional linear space spanned by E ..., £

tn

LeEmMMA.  The error in the approximation of E, by #\(A ... A, —) has
the norm

“E,IA(TA('{] ----- ;tn: *)”2:(2/1)7]"Z ' ID(/U‘ (6)
where
D)= || [ =)/ (4 +4)). (7)
i1
Proof. Using Gram's lemma |2, p. 194| we find
HEI ;Zl(;{l""*inzg)uf:G(il"“"in”i)/G(il """ An)' (8)
where

- ]

Gy s hy) = dlet | | ELOE
-t

ig o1

n

= det

X+

iJj=1

Cauchy’s formula |2, p. 195] then gives the explicit formula

{

Glhsvni) = || Gy~ A1) / ]G+ 4

1

which in conjunction with (8) yields (6). 1§

Note. When using generalized differential approximation with the fixed
exponential basis as described in [5], the parameters 4,..... 4, are uniquely
determined by requiring (7) to be orthogonal to all polynomials of degree
n— 1 or less with respect to the inner product associated with the measure

df.
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266 DAVID W. KAMMLER
RaAPID CONVERGENCE

When using Bellman’s differential approximation |1, p. 226], generalized
differential approximation with the fixed exponential basis [5], optimal least-
squares approximation (with respect to all 2n parameters a,;, 4,;,/ = 1,.... n)
[4], and a number of similar algorithms, we first generate the n exponents
Ani~ J= li.on, according to some rule and then determine the n linear
parameters a,;, / = l...., n, by a least-squares criterion. When this is done to
approximate a completely monotonic function of the form (4), it can be
shown that the exponents 1,; are distinct points which are localized in the
interval («, f#), cf. |S. Theorem 1; 4, Theorem 3 and Lemma [|. The rapid
convergence of Y, to £ is then guaranteed by the following

THEOREM. For each n=1,2... let the exponents A, < --- < 4,, lie in
{a, B, where 0 < a < f§ < 0. and let the coefficients a,,,,....a,, be chosen so
as to make (1) the best least-squares approximation to the completely
monotonic function (4) from the linear space spanned by E, ...E; . Then
(3) holds with K = (2a) V* F(0) and ¢ = (§ — a)/(f + «).

Proof. Since a,,....,a,, are optimal in the least-squares sense, we may
use (4), (5), and the lemma to write

-3
|F—Y,l,= H| - Edfih) -,

1 2
3
v

< Hl IE\ — &Lyt g =) df ()
3

2

< B = Ay Ay Dl dAR)

1 a
B
= J‘ 24) "2 D, (M) df (A)
< (2a)" ' max | D,(4) - F(0),
where
D)= | | 1= L/ Gk + Ay, )

all lie in [a, f],

1D, < B —a)/ B+ a)]”

Finally, since 4, ,..., 4

nn

so the proof is complete. 1§
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Note. If for each n=1,2,.. we uniquely determine the roots
Ay < -0 < 4,, by the requirement that

max |D,(4)| = Minimum,
a<Ad<j

and then determine a,,....,a,, by the least-squares criterion, the resulting
sequence  Y,,Y,... will satisfy (3) with g replaced by some
g* < (f—a)/(f + a). This being the case, (3) will also hold for such a g*
when Y, is a best least-squares approximation of the form (1) to F.
n=1,2...

Note. We may also use |3, Theorem 2| to deduce a bound of the form
(3) when for each n=1,2...., Y, is a best least-squares approximation of the
form (1) to a function of the form (4).

Note. When ¢ =0 or f= o the above argument fails. Nevertheless. if
we have some means of showing that D,(4) converges to 0 at each point of
support of df (e.g., as is the case when the 4,;'s are ultimately dense in the
sense that

limmin |4 — 4

n /

=0

nj

at each point A1 in the support of df (cf. [5, Theorem 5]) then it is still
possible to establish the convergence of Y, to F, but the rate (3) is lost in the
process.

REFERENCES

I. R. BELLMAN, “*Methods of Nonlinear Analysis,” Vol. I, Academic Press, New York. 1970.

2. E. W. CHENEY, “Introduction to Approximation Theory,” McGraw-Hill. New York. 1966.

3. D. W. KAMMLER, Aproximation with sums of exponentials in L [0, o). J. Approx. Theory
16 (1976), 384-408.

4. D. W. KAMMLER, Least squares approximation of completely monotonic functions by
sums of exponentials, SIAM J. Numer. Anal. 16 (1979), 801-818.

5. D. W. KAMMLER, Differential approximation of completely monotonic functions, SIAM J.
Numer. Anal. 18 (1981}, 900-918.

6. R. ScHaBAack. Suboptimal exponential approximations, STAM J. Numer. Anal. 16 (1979).
1007-1018.



